
Benchmark Sparse Matrices
• 14 sparse matrices are used for

performance evaluation

• One half are from NVIDIA

Research [4]

• The other half are from the

University of Florida sparse

matrix collection [5]

• Average row lengths range from

3 up to 2,633 with standard

deviations varying from 0 up to

4,210

Abstract
LightSpMV [1] is a novel CUDA-compatible sparse matrix-vector multiplication (SpMV) algorithm using

the standard compressed sparse row (CSR) storage format. It achieves high speed by benefiting from the

fine-grained dynamic distribution of matrix rows over vectors, where a warp is virtualized as a single

instruction multiple data (SIMD) vector and can be further split into a set of equal-sized smaller vectors

for finer-grained processing.

In LightSpMV, we have investigated two dynamic row distribution approaches at the vector and warp

levels with atomic operations and warp shuffle functions as the fundamental building blocks. We have

evaluated LightSpMV using various sparse matrices and further compared it to the CSR-based SpMV

subprograms in the state-of-the-art CUSP [2] and cuSPARSE [3] libraries. Performance evaluation reveals

that on a single Tesla K40c GPU, LightSpMV is superior to both CUSP and cuSPARSE, with a speedup

of up to 2.60 and 2.63 over CUSP, and up to 1.93 and 1.79 over cuSPARSE for single and double

precision, respectively. The source code of LightSpMV is available at http://lightspmv.sourceforge.net.

Faster Compressed Sparse Row (CSR)-based Sparse Matrix-Vector

Multiplication using CUDA

Yongchao Liu, Jorge González-Domínguez, Bertil Schmidt

Institute of Computer Science, University of Mainz, Germany

Emails: {liuy, j.gonzalez, bertil.schmidt}@uni-mainz.de

Sparse Matrix-Vector Multiplication
General SpMV equation:

• A is a sparse matrix of size R×C

with NNZ non-zeros

• x is the source vector of size C

• y is the destination vector of size

R

• α and β are scalars

Performance Evaluation
• A Kepler-based Tesla K40c GPU and

CUDA 6.5 toolkit

• The vector-level kernel produces an

average performance of 14.8 GFLOPS

with the maximum performance of 27.0

GFLOPS for single precision, and an

average performance of 12.2 GFLOPS

with the maximum performance of 20.9

GFLOPS for double precision

• The warp-level kernel yields an average

performance of 21.7 GFLOPS with the

maximum performance of 32.0

GFLOPS for singe precision, and an

average performance of 16.6 GCUPS

with the maximum performance of 23.8

GFLOPS for double precision

• Two CSR-based SpMV subprograms in

CUSP: spmv_csr_scalar_tex (CSR-Scalar)

and spmv_csr_vector_tex (CSR-Vector)

• LightSpMV is far superior to CSR-Scalar,

achieving average speedups of 10.76 and

8.73 with maximum speedups of 22.76

and 13.87 for single and double

precision, respectively

• Compared to CSR-Vector, the average

speedups of LightSpMV are 1.72 and

1.70, and the maximum speedups are

2.60 and 2.63 for single and double

precision, respectively

• Two CSR-based SpMV subprograms in

cuSPARSE: cusparseScsrmv and

cusparseDcsrmv for single and double

precision, respectively

• LightSpMV outperforms cuSPARSE for

each case, with the average speedup of

1.47 and the maximum speedup of 1.93

for single precision, and an average

speedup of 1.32 with the maximum

speedup of 1.79 for double precision

Compressed Sparse Row (CSR) Format
• A frequently used format for sparse matrix storage in CPU-centric software

• Efficient compression of structured and un-structured sparse matrices

• Good amenability to efficient algorithms designed for CPUs

• Enables good SpMV performance on CPUs, but shows a relatively low performance on GPUs

• Uses three separate vectors: row_offsets, column_indices, and values to represent a matrix

Vector-Level Dynamic Row Distribution
• Initially, each vector obtains a row index i from a

global row management (GRM) data structure, and

computes y[i].

• GSR contains an integer-type variable row_counter,

which is stored in global memory and represents the

lowest row index among all unprocessed rows.

• When a vector has completed its current row, it will

retrieve a new row from GRM by incrementing

row_counter through an atomic addition operation.

• The first thread of each vector takes charge of the

new row retrieval and broadcasts the new row index

to all of the other threads in the vector.

• Warp shuffle functions are used for row index

broadcasting and intra-vector reduction for vector

dot product.

0.1 0.7 0 0

0 0.2 0.8 0

0.5 0 0.3 0.9

0 0.6 0 0.4

A =

row_offsets =

column_indices =

values =

0 2 4 7 9

0 1 1 2 0 2 3 1 3

0.1 0.7 0.2 0.8 0.5 0.3 0.9 0.6 0.4

Pseudocode of the sequential SpMV using CSR

CSR representation of an example sparse matrix

y Ax y  

Host-side SpMV Driver Routine
• Dynamic determination of

vector size based on average

row length

• Do not need any host-side

pre-processing of the CSR

data structure

• Launch only a single kernel to

perform the SpMV operation.

• CUDA kernels are

implemented as CUDA C++

template functions

References
1. Y. Liu and B. Schmidt: LightSpMV: Faster CSR-based Sparse Matrix-Vector Multiplication on

CUDA-enabled GPUs. 26th IEEE International Conference on Application-specific Systems, Architectures and

Processors, 2015, ready to submit.

2. N. Bell and M. Garland: CUSP : Generic Parallel Algorithms for Sparse Matrix and Graph

Computations (v0.4). http://cusplibrary.github.io, 2014

3. NVIDIA: The NVIDIA CUDA Sparse Matrix Library (cuSPARSE), In CUDA 6.5 toolkit, 2014

4. N. Bell and M. Garland: Implementing Sparse Matrix-Vector Multiplication on Throughput-

oriented Processors. Proceedings of the Conference on High Performance Computing Networking, Storage and

Analysis, 2009

5. T. A. Davis and Y. Hu: The University of Florida Sparse Matrix Collection. ACM Transactions on

Mathematical Software, 38 (1), 2011

Pseudocode for vector-level row distribution

Warp-Level Dynamic Row Distribution
• Only one atomic operation is

issued for a warp

• Distributes warpSize / V rows

to a single warp at a time

• Obtains the warp-level CUDA

kernel by replacing the function

getRowIndexVector with the

function getRowIndexWarp.

Pseudocode for the vector-level CUDA kernel

Double Precision Support
Intra-vector reduction for double precision.

• Overloads the __shfl_down function for double

• Uses the reinterpret_cast compiler directive

• Uses integer __shfl_down to exchange data

Texture fetch for double precision

• Uses texture object API to reinterpret a double-

type value to an int2-type value

• Uses the __hiloint2double function to recover the

double-type value

7.83

4.00

6.17

8.67 8.53

11.23

9.04
9.95

14.38

10.91

16.87 16.62

3.60

22.76

2.60
1.09 1.57

1.92 2.08 2.02 1.64 1.57
2.49

1.61 1.54 1.50 1.08 1.30

0

5

10

15

20

25

S
p

e
e
d

u
p

Matrix

Single Precision

CSR-Scalar

CSR-Vector

6.20

2.10

6.07

7.66
8.26

9.89

7.46

9.67

12.67

9.93

13.04
12.43

2.97

13.87

2.63

1.28 1.75
1.96 1.88 2.10 1.70 1.67

2.27

1.54 1.51 1.44 1.04 1.08

0

2

4

6

8

10

12

14

16

S
p

e
e
d

u
p

Matrix

Double Precision

CSR-Scalar

CSR-Vector

1.93

1.09

1.47 1.45

1.17

1.56 1.50

1.15

1.58
1.61 1.59

1.67

1.27

1.56

1.79

1.03

1.51 1.59

1.06

1.35
1.24

1.02

1.36 1.37 1.37 1.40

1.14
1.22

0

1

1

2

2

3

S
p

e
e
d

u
p

Matrix

Single precision Double precision

Performance comparison to CUSP

Performance comparison to cuSPARSE

Performance of the vector-level and warp-level kernels

Pseudocode of the host-side driver for SpMV kernel invocation

http://lightspmv.sourceforge.net/
http://lightspmv.sourceforge.net/
http://lightspmv.sourceforge.net/
http://lightspmv.sourceforge.net/
http://lightspmv.sourceforge.net/
http://lightspmv.sourceforge.net/
http://lightspmv.sourceforge.net/

