
Benchmark Sparse Matrices 
• 14 sparse matrices are used for 

performance evaluation 

 

• One half  are from NVIDIA 

Research [4] 

 

• The other half  are from the 

University of  Florida sparse 

matrix collection [5] 

 
• Average row lengths range from 

3 up to 2,633 with standard 

deviations varying from 0 up to 

4,210 

Abstract 
LightSpMV [1] is a novel CUDA-compatible sparse matrix-vector multiplication (SpMV) algorithm using 

the standard compressed sparse row (CSR) storage format. It achieves high speed by benefiting from the 

fine-grained dynamic distribution of  matrix rows over vectors, where a warp is virtualized as a single 

instruction multiple data (SIMD) vector and can be further split into a set of  equal-sized smaller vectors 

for finer-grained processing. 
 

In LightSpMV, we have investigated two dynamic row distribution approaches at the vector and warp 

levels with atomic operations and warp shuffle functions as the fundamental building blocks. We have 

evaluated LightSpMV using various sparse matrices and further compared it to the CSR-based SpMV 

subprograms in the state-of-the-art CUSP [2] and cuSPARSE [3] libraries. Performance evaluation reveals 

that on a single Tesla K40c GPU, LightSpMV is superior to both CUSP and cuSPARSE, with a speedup 

of  up to 2.60 and 2.63 over CUSP, and up to 1.93 and 1.79 over cuSPARSE for single and double 

precision, respectively. The source code of  LightSpMV is available at http://lightspmv.sourceforge.net. 

Faster Compressed Sparse Row (CSR)-based Sparse Matrix-Vector 

Multiplication using CUDA 

Yongchao Liu, Jorge González-Domínguez, Bertil Schmidt 

Institute of  Computer Science, University of  Mainz, Germany 

Emails: {liuy, j.gonzalez, bertil.schmidt}@uni-mainz.de 

Sparse Matrix-Vector Multiplication 
General SpMV equation:                           

 
 

• A is a sparse matrix of  size R×C 

with NNZ non-zeros 

• x is the source vector of  size C 

• y is the destination vector of  size 

R 

• α and β are scalars 
 

Performance Evaluation 
• A Kepler-based Tesla K40c GPU and 

CUDA 6.5 toolkit 

 

• The vector-level kernel produces an 

average performance of  14.8 GFLOPS 

with the maximum performance of  27.0 

GFLOPS for single precision, and an 

average performance of  12.2 GFLOPS 

with the maximum performance of  20.9 

GFLOPS for double precision 

 

• The warp-level kernel yields an average 

performance of  21.7 GFLOPS with the 

maximum performance of  32.0 

GFLOPS for singe precision, and an 

average performance of  16.6 GCUPS 

with the maximum performance of  23.8 

GFLOPS for double precision 

• Two CSR-based SpMV subprograms in 

CUSP: spmv_csr_scalar_tex (CSR-Scalar) 

and spmv_csr_vector_tex (CSR-Vector) 

 

• LightSpMV is far superior to CSR-Scalar, 

achieving average speedups of  10.76 and 

8.73 with maximum speedups of  22.76 

and 13.87 for single and double 

precision, respectively 

 

• Compared to CSR-Vector, the average 

speedups of  LightSpMV are 1.72 and 

1.70, and the maximum speedups are 

2.60 and 2.63 for single and double 

precision, respectively 

• Two CSR-based SpMV subprograms in 

cuSPARSE: cusparseScsrmv and 

cusparseDcsrmv for single and double 

precision, respectively 

 

• LightSpMV outperforms cuSPARSE for 

each case, with the average speedup of  

1.47 and the maximum speedup of  1.93 

for single precision, and an average 

speedup of  1.32 with the maximum 

speedup of  1.79 for double precision 

Compressed Sparse Row (CSR) Format 
• A frequently used format for sparse matrix storage in CPU-centric software 

• Efficient compression of  structured and un-structured sparse matrices  

• Good amenability to efficient algorithms designed for CPUs 

• Enables good SpMV performance on CPUs, but shows a relatively low performance on GPUs 

• Uses three separate vectors: row_offsets, column_indices, and values to represent a matrix 

Vector-Level Dynamic Row Distribution 
• Initially, each vector obtains a row index i from a 

global row management (GRM) data structure, and 

computes y[i]. 

• GSR contains an integer-type variable row_counter, 

which is stored in global memory and represents the 

lowest row index among all unprocessed rows. 

• When a vector has completed its current row,  it will 

retrieve a new row from GRM by incrementing 

row_counter through an atomic addition operation. 

• The first thread of  each vector takes charge of  the 

new row retrieval and broadcasts the new row index 

to all of  the other threads in the vector. 

• Warp shuffle functions are used for row index 

broadcasting and intra-vector reduction for vector 

dot product. 
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Pseudocode of  the sequential SpMV using CSR 

CSR representation of  an example sparse matrix 

y Ax y  

Host-side SpMV Driver Routine 
• Dynamic determination of  

vector size based on average 

row length 

 

• Do not need any host-side 

pre-processing of  the CSR 

data structure 

 

• Launch only a single kernel to 

perform the SpMV operation. 

 

• CUDA kernels are 

implemented as CUDA C++ 

template functions 
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Pseudocode for vector-level  row distribution 

Warp-Level Dynamic Row Distribution 
• Only one atomic operation is 

issued for a warp 

• Distributes warpSize / V rows 

to a single warp at a time 

• Obtains the warp-level CUDA 

kernel by replacing the function 

getRowIndexVector with the 

function getRowIndexWarp. 

 

Pseudocode for the vector-level CUDA kernel 

Double Precision Support 
Intra-vector reduction for double precision. 

• Overloads the __shfl_down  function for double 

• Uses the reinterpret_cast compiler directive 

• Uses integer __shfl_down to exchange data 

Texture fetch for double precision 

• Uses texture object API to reinterpret a double-

type value to an int2-type value 

• Uses the __hiloint2double function to recover the 

double-type value 

 

7.83

4.00

6.17

8.67 8.53

11.23

9.04
9.95

14.38

10.91

16.87 16.62

3.60

22.76

2.60
1.09 1.57

1.92 2.08 2.02 1.64 1.57
2.49

1.61 1.54 1.50 1.08 1.30

0

5

10

15

20

25

S
p

e
e
d

u
p

Matrix

Single Precision

CSR-Scalar

CSR-Vector

6.20

2.10

6.07

7.66
8.26

9.89

7.46

9.67

12.67

9.93

13.04
12.43

2.97

13.87

2.63

1.28 1.75
1.96 1.88 2.10 1.70 1.67

2.27

1.54 1.51 1.44 1.04 1.08

0

2

4

6

8

10

12

14

16

S
p

e
e
d

u
p

Matrix

Double Precision

CSR-Scalar

CSR-Vector

1.93

1.09

1.47 1.45

1.17

1.56 1.50

1.15

1.58
1.61 1.59

1.67

1.27

1.56

1.79

1.03

1.51 1.59

1.06

1.35
1.24

1.02

1.36 1.37 1.37 1.40

1.14
1.22

0

1

1

2

2

3

S
p

e
e
d

u
p

Matrix

Single precision Double precision

Performance comparison to CUSP 

Performance comparison to cuSPARSE 

Performance of  the vector-level and warp-level kernels 

Pseudocode of  the host-side driver for SpMV kernel invocation 
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